Classification of Organisms

Dr. A. K.Goudarzi D.V.M. Ph.D Faculty of veterinary medicine Department of basic sciences I.A. University

Introduction

- 1. Why Classify?
 - To study the diversity of life
 - To organize and name organisms
 - 2. Why give scientific names?
 - Common names are misleading

jellyfish

star fish

silverfish None of these animals are fish!

Introduction

Why Scientists Assign Scientific Names to Organisms ?

This cat is commonly known as:

- •Florida panther
- Mountain lion
- •Puma
- •Cougar

Origin of Scientific Names

 By the 18th century, scientists realized that naming organisms with common names was confusing.

 Scientists during this time agreed to use a single name for each species.

 They used Latin and Greek languages for scientific names.

Linnaeus: The Father of Modern Taxonomy

1732: Carolus Linnaeus developed system of classification – <u>binomial</u> <u>nomenclature</u>

- a. Two name naming system
- b. Gave organisms 2 names
 Genus (noun) and *species* (adjective)

Rules for naming organisms

- 1. Written is Latin (unchanging)
- 2. Genus capitalized, species lowercase
- 3. Both names are *italicized* or <u>underlined</u> <u>EX: Homo sapiens:</u> wise / thinking man

Linnaeus's System of Hierarchy

1. Which of the following contains all of the others?

- a. Family
- b. Species

- Based on their names, you know that the baboons *Papio annubis* and *Papio cynocephalus* do <u>not</u> belong to the same:
 - a. Family
 - b. Genus

a Geographical address a Taxonomical address Continent Kingdom Country Phylum State or Province Class City Order Building Family Floor Genus Species Room or Apartment diam'r. COLUMN TRANSPORT IN COLUMN TWO IS NOT

Binomial Nomenclature Example

 For example, the polar bear is named Ursus maritimus.

• The genus, *Ursus*, describes a group of closely related bear species.

 In this example, the species, maritimus, describes where the polar bear lives on pack ice floating on the sea.

History of Classification

- Linnaeus grouped species into larger taxa, such as genus and family, based on visible similarities.
- Darwin's ideas about descent with modification evolved into the study of phylogeny, or evolutionary relationships among organisms.

History of Classification

- Modern biologists group organisms into categories representing lines of evolutionary descent.
- Species within a genus are more closely related to each other than to species in another genus.

Genus: Canis

History of Classification

3. Scientists use similarities and differences in DNA to determine classification and evolutionary relationships.

They can sequence or "read" the information coded in DNA to compare organisms.

Kingdoms and Domains

 In the 18th century, Linnaeus originally proposed two kingdoms: Animalia and Plantae.

• By the 1950s, scientists expanded the kingdom system to include five kingdoms.

Kingdoms and Domains

The Six Kingdom System
 In recent years, biologists have recognized that the Monera are composed of two distinct groups.

 As a result, the kingdom Monera has now been separated into two kingdoms: Eubacteria and Archaebacteria, resulting in a sixkingdom system of classification.

Kingdoms and Domains

 Scientists can group modern organisms by comparing ribosomal **RNA** to determine how long they have been evolving independently. • This type of molecular analysis has resulted in a new taxonomic category—the domain.

The Three Domains

- The three domains, which are larger than the kingdoms, are the following:
- Eukarya protists, fungi, plants and animals
- Bacteria which corresponds to the kingdom Eubacteria.
- Archaea which corresponds to the kingdom Archaebacteria.

Classification of Living Things

SIX KINGDOMS

Hierarchical Ordering of

CDECI

As we move from the kingdom level to the species level, more and more members are removed.

> Each level is more specific.

Kingdom Archaebacteria

Cell Type	Prokaryote	
Number of Cells	Unicellular	
Nutrition	Autotroph or Heterotroph	aples :
Location	Extreme Environments Volcanoes, Deep Sea Vents, Yellowstone Hot Springs	
Examples	Methanogens Thermophiles	

Kingdom Eubacteria

Cell Type	Prokaryote
Number of Cells	Unicellular
Nutrition	Autotroph or Heterotroph
Examples	Streptococcus, Escherichia coli (E. coli)

E. coli

Streptococcus

Kingdom Protista

Cell Type	Eukaryote
Number of Cells	Most Unicellular, some multicellular
Nutrition	Autotroph or Heterotroph
Examples	Amoeba, Paramecium, Euglena,

Paramecium

Green algae

Amoeba

Kingdom Fungi

Cell Type	Eukaryote
Number of Cells	Most multicelluar, some unicelluar
Nutrition	Heterotroph
Example	Mushroom, yeast, mildew, mold

Mildew on Leaf

Mushroom

Most Fungi are DECOMPOSERS

Kingdom Plantae

Cell Type	Eukaryote
Number of Cells	Multicellular
Nutrition	Autotroph
Examples	Mosses, ferns, conifers, flowering plants

Ferns : seedless vascular

Douglas fir: seeds in cones

Mosses growing on trees

Sunflowers: seeds in flowers

Kingdom Animalia

Cell Type	Eukaryote
Number of Cells	Multicellular
Nutrition	Heterotroph
Examples	Sponges, worms, insects, fish, mammals

Bumble bee

Sage grouse

Poison dart frog

Jellyfish

Hydra

Sponge

Terminology

Classification

 Assigning organisms to different catagories based on their relationship

Taxonomy

• The science of naming organisms

Systematics

- Determining evolutionary relationships of organisms
- Phylogeny
 - Evolutionary history

Cladogram

- Evolutionary relationship of a group of organisms
- Each clad (group) share something in common
- Ancestral traits are the oldest
- Derived traits evolved later

Cladogram for Transportation

Wheels are the most ancestralWings are the most derived

Construct a Cladogram

Characteristics for Constructing Cladogram

Tail is the most ancestral
Four limbs is the oldest derived trait
Fur is a later derived trait
Loss of tail is the most derived trait

Homodont teeth

Phylogenetic Tree

